单片机系统低功耗设计策略

[09-12 18:12:27]   来源:http://www.88dzw.com  单片机学习   阅读:8407

文章摘要: 图1HCS08单片机各模式下的耗电 以R系列单片机为例:在室温(25℃)下,不包括I/O口的负载,以2 V供电,将可编程锁相环时钟设为16MHz(总线时钟8 MHz),典型电流值为2.6 mA,当温度升高到85℃时,供电电流也升高到3.6 mA;而采用3 V供电,这一组数据升高至3.8 mA和4.8 mA。用2 V供电,直接使用外部晶振2 MHz(总线时钟1 MHz)时,典型运行电流降至450 μA。在等待状态下,因时钟并没有停止,耗电情况和时钟频率有很大关系,节省的功耗有限;而进入轻度停止(stop3),以外部中断唤醒,电流消耗在0. 5 μA左右

单片机系统低功耗设计策略,标签:单片机开发,单片机原理,单片机教程,http://www.88dzw.com
    
    
    
    图1HCS08单片机各模式下的耗电  
     以R系列单片机为例:在室温(25℃)下,不包括I/O口的负载,以2 V供电,将可编程锁相环时钟设为16MHz(总线时钟8 MHz),典型电流值为2.6 mA,当温度升高到85℃时,供电电流也升高到3.6 mA;而采用3 V供电,这一组数据升高至3.8 mA和4.8 mA。用2 V供电,直接使用外部晶振2 MHz(总线时钟1 MHz)时,典型运行电流降至450 μA。在等待状态下,因时钟并没有停止,耗电情况和时钟频率有很大关系,节省的功耗有限;而进入轻度停止(stop3),以外部中断唤醒,电流消耗在0. 5 μA左右。在中度停止态(stop2),功耗可进一步降低。使用内部1 kHz的时钟,保持1个运行的时钟,周期性唤醒CPU,所增加的电流约为0.3 μA。在深度停止态(stop1),RAM的数据也不再保留,只能通过外部复位重启系统,此时的电流消耗可降到20 nA。以上数据都是在室温下测量所得。当环境温度升高到85℃时,电流消耗可能增加3~5倍。
     1.4选择合适的时钟方案  
      时钟的选择对于系统功耗相当敏感,设计者需要注意两个方面的问题:  
      第一是系统总线频率应当尽量低。单片机内部的总电流消耗可分为两部分——运行电流和漏电流。理想的CMOS开关电路,在保持输出状态不变时,是不消耗功率的。例如,典型的CMOS反相器电路,如图2所示,当输入端为零时,输出端为1,P晶体管导通,N晶体管截止,没有电流流过。而实际上,由于N晶体管存在一定漏电流,且随集成度提高,管基越薄,漏电流会加大。温度升高,CMOS翻转阈电压会降低,而漏电流则随环境温度的增高变大。在单片机运行时,开关电路不断由“1”变“0”、由“0”变“1”,消耗的功率是由单片机运行引起的,我们称之为“运行电流”。如图2所示,在两只晶体管互相变换导通、截止状态时,由于两只管子的开关延迟时间不可能完全一致,在某一瞬间会有两只管子同时导通的情况,此时电源到地之间会有一个瞬间较大的电流,这是单片机运行电流的主要来源。可以看出,运行电流几乎是和单片机的时钟频率成正比的,因此尽量降低系统时钟的运行频率可以有效地降低系统功耗。                                      
    
    
     图2典型的CMOS反相器   
     第二是时钟方案,也就是是否使用锁相环、使用外部晶振还是内部晶振等问题。新一代的单片机,如飞思卡尔的HCS08系列单片机,片内带有内部晶振,可以直接作为时钟源。使用片内晶振的优点是可以省掉片外晶振,降低系统的硬件成本;缺点是片内晶振的精度不高(误差一般在25%左右,即使校准之后也可能有2%的相对误差),而且会增加系统的功耗。   
     现代单片机普遍采用锁相环技术,使单片机的时钟频率可由程序控制。锁相环允许用户在片外使用频率较低的晶振,可以很大地减小板级噪声;而且,由于时钟频率可由程序控制,系统时钟可以在一个很宽的范围内调整,总线频率往往能升得很高。但是,使用锁相环也会带来额外的功率消耗。   
     单就时钟方案来讲,使用外部晶振且不使用锁相环是功率消耗最小的一种。 
     2 应用软件方面的考虑  

上一页  [1] [2] [3]  下一页


Tag:单片机学习单片机开发,单片机原理,单片机教程单片机学习
分类导航
最新更新
热门排行