I370_变压器短路事故分析

[09-27 18:54:13]   来源:http://www.88dzw.com  电力技术   阅读:8515

文章摘要: (4)采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。 (5)绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。 (6)绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。 (7)绕组的预紧力控制不当造成普通换位导线的导线相互错位。 (8)套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患. (9)作用在各绕组或各

I370_变压器短路事故分析,标签:电力技术资料下载,电力电子技术,http://www.88dzw.com

  (4)采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。

  (5)绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。  

  (6)绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。  

  (7)绕组的预紧力控制不当造成普通换位导线的导线相互错位。

  (8)套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患.

  (9)作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电磁线上的弯应力过大而发生变形.

   (10)外部短路事故频繁,多次短路电流冲击后电动力的积累效应引起电磁线软化或内部相对位移,最终导致绝缘击穿。

 变压器短路损坏的常见部位

 对应铁轭下的部位。该部位发生变形原因有:(1)短路电流所产生的磁场是通过油和箱壁或铁心闭合,由于铁轭的磁阻相对较小,故大多通过油路和铁轭间闭合,磁场相对集中,作用在线饼的电磁力也相对较大;(2)内绕组套装间隙过大或铁心绑扎不够紧实,导致铁心片二侧收缩变形,致使铁轭侧绕组曲翘变形;(3)在结构上,轭部对应绕组部分的轴向压紧是最不可靠的,该部位的线饼往往难以达到应有的预紧力,因而该部位的线饼最易变形。

 调压分接区域及对应其他绕组的部位。该区域由于:(1)安匝不平衡使漏磁分布不均衡,其幅向额外产生的漏磁场在线圈中产生额外轴向外力,这些力的方向总是使产生这些力的不对称性增大。轴向外力和正常幅向漏磁所产生的轴向内力一样,使线饼向竖直方向弯曲,并压缩线饼件的垫块,除此之外,这些力还部分地或全部地传到铁轭上,力求使其离开心柱,出现线饼向绕组中部变形或翻转现象。(2)该部位的线饼为力求安匝平衡或分接区间的应有绝缘距离,往往要增加较多的垫块,较厚的垫块致使力的传递延时,因而对线饼撞击也较大;(3)绕组套装后不能确保中心电抗高度对齐,致使安匝进一步加剧不平衡;(4)运行一段时间后,较厚的垫块自然收缩量较大,一方面加剧安匝不平衡现象,另一方面受短路力时跳动加剧;(5)在设计时间为力求安匝平衡,分接区的电磁线选用了较窄或较小截面的线规,抗短力能力低。

 换位部位。这部位的变形常见于换位导线的换位和单螺旋的标准换位处。换位导线的换位,由于其换位的爬坡较普通导线的换位为陡,使线匝半径不同的换位处产生相反的切向力,这对大小相等方向相反的切向力,致使内绕组的换位向直径变小,方向变形,外绕组的换位力求线匝半径相同,使换位拉直,内换位向中心变形,外换位向外变形,而且换位导线厚度越厚,爬坡越陡,变形越严重。另外,换位处还存在轴向短路电流分量,所产生的附加力,致使线饼变形加剧。单螺旋的标准换位,在空间上要占一匝的位置,造成该部位安匝不平衡,同时又具有换位导线换位变形特征,因此该部位的线饼更容易变形。

 绕组的引出线。常见于斜口螺旋结构的绕组,该结构的绕组,由于二个螺旋口安匝不平衡,轴向力大,同时又有轴向电流存在,使引出线拐角部位产生一个横向力而发生扭曲变形现象。另外螺旋绕组在绕制过程中,有剩余应力存在,会使绕组力求恢复原状现象,故螺旋结构的绕组,受短路电流冲击下更容易扭曲变形。

    引线间。常见于低压引线间,低压引线由于电压低流过电流大,相位120度,使引线相互吸引,如果引线固定不当的话,会发生相间短路。

上一页  [1] [2] 


Tag:电力技术电力技术资料下载,电力电子技术电力技术

《I370_变压器短路事故分析》相关文章

分类导航
最新更新
热门排行