USB端口对NiMH电池智能充电的实现

[09-13 16:56:52]   来源:http://www.88dzw.com  接口定义   阅读:8185

文章摘要:图3. 采用DS2712充电控制器对NiMH电池充电。开关与线性USB 2.0规范允许低功率端口提供最大100mA电流,大功率端口提供最大500mA电流。如果采用线性调整器件来调节电池充电电流,这也就是最大可提供的充电电流。线性调整器件(图4)的功耗为P = VQ x IBATT。这会造成调整管发热,可能需要安装散热器,以防止过热。图4. 功耗等于电池充电电流乘以调整管两端的电压。对应5V标称输入电压,调整器件消耗的功率与电池类型、数量和电池电压有关。图5. 采用5.0V电压的USB端口对NiMH电池充电时,线性调整器件的功耗。标称输入电压为5.0V时,线性USB充电器对NiMH电池充电的功耗

USB端口对NiMH电池智能充电的实现,标签:接口技术,微机原理与接口技术,http://www.88dzw.com

图3. 采用DS2712充电控制器对NiMH电池充电。

  开关与线性

  USB 2.0规范允许低功率端口提供最大100mA电流,大功率端口提供最大500mA电流。如果采用线性调整器件来调节电池充电电流,这也就是最大可提供的充电电流。线性调整器件(图4)的功耗为P = VQ x IBATT。这会造成调整管发热,可能需要安装散热器,以防止过热。


图4. 功耗等于电池充电电流乘以调整管两端的电压。

  对应5V标称输入电压,调整器件消耗的功率与电池类型、数量和电池电压有关。


图5. 采用5.0V电压的USB端口对NiMH电池充电时,线性调整器件的功耗。

  标称输入电压为5.0V时,线性USB充电器对NiMH电池充电的功耗计算结果如图5所 示。对单节电池充电时,线性充电器的效率仅为30%;对两节电池充电时,效率为60%。用500mA电流对单节电池充电时,功耗会高达2W。这样的功耗通 常需要加散热器。功耗为2W时,热阻为+20°C/W的散热器在+25°C环境温度下会被加热至大约+65°C,要得到满额性 能,还需要有流动空气来协助其散热。处于空气静止的封闭空间内,温度会更高。

  采用基于开关调节器的充电器可解决多个问题。首先,与线性充电器相比,能够以更快的速率、更大的电流对电池进行充电(图6)。由于功耗较低、发热较少,热管理方面的问题也减少了。同时,由于运行温度降低,充电器更加可靠。


图6. 对单节NiMH电池充电时,线性充电器和开关充电器的充电时间不同。

  图6中的计算结果基于以下条件和假设得到:采用高功率USB口最大允许电流(500mA)的大约90%充电;开关调节器采用非同步整流的buck转换器,具有77%效率。

  电路实例

  图7所示电路是用于单节NiMH电池充电的开关模式降压型调节器。它采用DS2712充电控制器调节充电电流和终止充电。充电控制器监视温度、电池电压和电池电流。如果温度超过+45°C或者低于0°C,控制器不会对电池充电。


图7. USB端口对单节NiMH电池快速充电的原理图。

  如图7所示,Q1是降压型充电器的开关功率晶体管;L1是滤波电感;D1是续流或整流二极管。输入电容C1为 10?F、超低ESR的陶瓷滤波电容。用钽电容或者其它电解电容替代C1会使充电器的性能降低。R7是电流调节器检测放大器的检流电阻。 DS2712的基准电压为0.125V,并具有24mV滞回。通过CSOUT提供闭环、开关模式电流控制。充电控制引脚CC1将Q2的栅极拉低时,使能 Q1的栅极驱动。Q1和Q2均为低Vt (栅-源门限电压)的pMOSFET。CC1和CSOUT均为低电平时,Q2的漏-源电压将稍大于Vt。该电压以及CSOUT的正向压降构成了Q1的栅极 开关电压。

  CC1为低电平时,启动电流闭环控制。图8所示为启动开关时的波形。上方波形是0.125Ω (检流电阻两端的电压,下方波形是Q1漏极至GND的电压。开始时,当Q1打开(CC1和CSOUT均为低电平)时,电感电流向上爬升。当电流增大到使检 流电阻两端的电压达到0.125V时,CSOUT变为高电平,开关关断。此后,电感电流开始下降,直到检流电阻两端的电压达到约0.1V,CSOUT又变 为低电平。只要CC1为低电平,该过程将一直持续。

上一页  [1] [2] [3] [4]  下一页


Tag:接口定义接口技术,微机原理与接口技术接口定义
分类导航
最新更新
热门排行