基于NiosII的 低码率实时H.264视频编码器
[10-10 20:36:41] 来源:http://www.88dzw.com 电子制作 阅读:8691次
文章摘要: ②预测模块包含了DC、HOR、VERT、PLANE四种预测模式的实现实体,根据模式选择模块决定的预测模式从接口模块读取预测参考像素和原始像素值,预测后残差输出到残差处理模块,预测值输出到补偿重构模块保存。 ③残差处理模块采用2个存放残差的RAM,每个宏块可先并行做2种预测,残差分别保存到2个RAM中,选择其中较佳预测模式,再做下一种预测模式与前面所选较佳预测模式比较,直到完成所有预测模式选择出最佳预测模式。 ④预测代价模块是计算每一种预测模式的预测代价,以4×4块为单位作hadamard变换,将变换后每个4×4块DC系数再做一次hadamard变换,将所有变换结果进行绝对值
基于NiosII的 低码率实时H.264视频编码器,标签:电子小制作,http://www.88dzw.com②预测模块包含了DC、HOR、VERT、PLANE四种预测模式的实现实体,根据模式选择模块决定的预测模式从接口模块读取预测参考像素和原始像素值,预测后残差输出到残差处理模块,预测值输出到补偿重构模块保存。
③残差处理模块采用2个存放残差的RAM,每个宏块可先并行做2种预测,残差分别保存到2个RAM中,选择其中较佳预测模式,再做下一种预测模式与前面所选较佳预测模式比较,直到完成所有预测模式选择出最佳预测模式。
④预测代价模块是计算每一种预测模式的预测代价,以4×4块为单位作hadamard变换,将变换后每个4×4块DC系数再做一次hadamard变换,将所有变换结果进行绝对值累加就是对应的预测代价。
色度预测模块结构基本和亮度预测相同,只是由于色度有Cb、Cr两个分量,残差在RAM中的存放方式略有差别;同一个宏块的色度预测和亮度预测是并行执行的,由于要处理的色度数据比亮度少一半,笔者在后面的整数变换中采用先处理色度,再处理亮度的方法,使得流水更加紧凑,减少等待时间,提高整个模块的运行速度。
3 结 论
笔者设计的基于NiosII的低码率实时H.264视频编码系统,在系统时钟频率100 MHz时,压缩一帧320×240的彩色图像需16.283 ms,在量化参数选择30时,图像压缩比达到2%,实时监控图像帧率25帧/s。系统具有资源占用较少,低成本,低码率,高清视频质量的特点,具有较好的发展前景。
图9为集成开发环境下综合仿真后系统的资源占用情况。
其中图像提取子模块在H.264/AVC编码模块的视频采集控制信息的控制下,从ADV7181B转换输出的PAL制数字视频图像中提取需要的图像数据。摄像头采集的实际图像大小为768×576像素的隔行扫描视频输入信号,其中基数场和偶数场在时间上先后输入。由于系统处理的图像大小为320×240像素,因此需要对输入的数字视频进行截取,以满足系统的处理要求。
考虑到在一帧图像中的顶场与底场数据差异不大,因此在对图像进行截取时,仅对底场中间240行的连续320个相邻像素点进行提取,以输出320×240像素的视频图像数据。其具体提取流程如图4所示。
H.264/AVC支持对色度取样为4:2:O格式的逐行或隔行扫描数字图像进行处理,因此需要对提取的数字图像进行色度取样率变换。通过对相邻奇数行和偶数行的色度图像分量进行简单的平均,可实现由4:4:4向4:2:O的色度取样率变换,如图5所示。
经过取样率变换后的图像数据需要根据Y/Cb/Cr图像类型在SRAM中分片区缓存,以方便后续的H_264的编码处理。图6给出了实际图像的色度分量在取样率变换前后的效果。
Tag:电子制作,电子小制作,维修教程知识 - 电子制作
- 上一篇:冰箱门开定时提醒器电路
《基于NiosII的 低码率实时H.264视频编码器》相关文章
- › 基于NIOS嵌入式软核的硬盘录像机的设计与实现
- › 基于NiosII的 低码率实时H.264视频编码器
- › 基于NiosⅡ软核的嵌入式多路视频点播系统
- › 基于NiosII的IP Camera传输系统实现
- 在百度中搜索相关文章:基于NiosII的 低码率实时H.264视频编码器
- 在谷歌中搜索相关文章:基于NiosII的 低码率实时H.264视频编码器
- 在soso中搜索相关文章:基于NiosII的 低码率实时H.264视频编码器
- 在搜狗中搜索相关文章:基于NiosII的 低码率实时H.264视频编码器
编辑推荐
最新更新
热门排行