CMOS音频功率放大器的旁路电压控制电路

[09-14 01:20:40]   来源:http://www.88dzw.com  电子制作   阅读:8415

文章摘要: 该宽度电压表明了比较器所允许的最大噪声幅度。 与文献中所介绍的利用内部电压正反馈实现迟滞的电路相比,采用电流反馈的方法,一方面避免了同时使用正、负反馈,使电路的性能更为稳定;另一方面也减少了MOS管状态改变的次数,降低了比较器传输时延。当PD为高电平时,M13截止,M14导通,使得M5,M7,M10均处于截止状态,整个电路处于低功耗状态。 1.3 控制电路 控制电路所实现的功能为产生比较器所需的基准电压和对旁路电容进行充、放电。图1中,M17,M18的栅极电压由放大器的偏置电路产生。当PD为低电平时,开关管M15导通,调节R1,R2的值,使B点的电压等于VDD/2,并

CMOS音频功率放大器的旁路电压控制电路,标签:电子小制作,http://www.88dzw.com



    该宽度电压表明了比较器所允许的最大噪声幅度。

    与文献中所介绍的利用内部电压正反馈实现迟滞的电路相比,采用电流反馈的方法,一方面避免了同时使用正、负反馈,使电路的性能更为稳定;另一方面也减少了MOS管状态改变的次数,降低了比较器传输时延。当PD为高电平时,M13截止,M14导通,使得M5,M7,M10均处于截止状态,整个电路处于低功耗状态。

    1.3 控制电路

    控制电路所实现的功能为产生比较器所需的基准电压和对旁路电容进行充、放电。图1中,M17,M18的栅极电压由放大器的偏置电路产生。当PD为低电平时,开关管M15导通,调节R1,R2的值,使B点的电压等于VDD/2,并将B点的电压作为比较器的正向转折电压,此时开关管M19导通。电路对旁路电容CB充电且将C点电压作为比较器的正向输入。当电容上的电压低于时,比较器输出低电平,M21截止;当电容上的电压高于正向转折电压时,比较器输出高电平,M19截止,电路停止对旁路电容充电,同时M21导通。此时C点的电压为:



    式中:VC+为M21导通后电容上的电压;VC-为M21导通前的电容上的电压;τ为时间常数,τ=(RB+R)C;RB为B点到地的等效电阻。可以看到在一段时间后,旁路电容上的电压将近似等于B点电压,即VDD/2,则得到所需的旁路电压。同时,考虑到音频功率放大器上电、掉电的“POP”噪声是由旁路电压的瞬间跳变引起的,所以可以适当的增大旁路电容以增大旁路电压的上升、下降速度,起到减少“POP”噪声的作用。

    当PD为高电平时.M16截止,电路不工作。

    2 仿真结果

    该使设计采用CANdence SpeCTRe仿真工具进行仿真,所采用的工艺是华润上华O.5μm的N阱CMOS工艺典型模型。

    图3为该设计中旁路电压的输出变化曲线。“SHUTDOWN”引脚低电平有效,输出曲线在电路从关断状态转为工作状态时会出现一个小突刺,这是由于旁路电容上的电压比节点C略高,电容会有一个小的放电过程。在常温下,输出约在3.4μs处开始稳定在2.5 V。当t=7.5μs时,输出为2.501 6 V,其误差为O.064%。电路的静态功耗为O.685 mW。

 



    图4为电压比较器的正端电压从2.0~3.O V变化以及从3.O~2.0 V变化时,比较器的输出变化曲线。可以看出,比较器的正向阈值电压,负向阈值电压。与的不等说明引入迟滞后电路抑制噪声的能力明显增强。



    图5和图6分别为比较器的正向传输时延和负向传输时延。由图可知,比较器的正向传输时延为7.632 ns,负向传输时延为35.32 ns。对于大部分的芯片而言,这个数量级的延迟是可以忽略的。



    3 结语

    从上面的仿真结果可以看出,该设计的旁路电压控制电路可以产生输出稳定的旁路电压,且具有一定的噪声抑制能力。此外,整个电路的静态功耗低,信号的延迟时间较短,可以广泛应用于各种音频放大器电路中。

上一页  [1] [2] 


Tag:电子制作电子小制作维修教程知识 - 电子制作