LED电视光源技术:概览及DLP的优势

[09-13 16:39:45]   来源:http://www.88dzw.com  信息显示与光电技术   阅读:8717

文章摘要:概要 本文将探讨发光二极管(Light Emitting Diode;LED)技术及其应用于电视机产品所造成的影响。本文将着重该技术的应用优势与挑战,及其应用于DLP产品的特殊优势。 介绍 LED已经成为一种关键的照明技术,用途广泛。自发明伊始 ,LED就被应用在包括手表、计算器、遥控器、指示灯在内的各种常见产品和家用设备。LED技术发展迅速,随着亮度和效率的不断提高,新的应用更是层出不穷。 LED历史 自20世纪初期,科学家们就不断寻找能够发光的各种物质。1907年,亨利·约瑟夫·让德发现碳化硅(SiC)能够发光。在接下来的50年中,不断有科学家发现能够发光

LED电视光源技术:概览及DLP的优势,标签:显示及光电,光电显示技术,http://www.88dzw.com
概要
    本文将探讨发光二极管(Light Emitting Diode;LED)技术及其应用于电视机产品所造成的影响。本文将着重该技术的应用优势与挑战,及其应用于DLP产品的特殊优势。

    介绍 
    LED已经成为一种关键的照明技术,用途广泛。自发明伊始 ,LED就被应用在包括手表、计算器、遥控器、指示灯在内的各种常见产品和家用设备。LED技术发展迅速,随着亮度和效率的不断提高,新的应用更是层出不穷。

    LED历史
    自20世纪初期,科学家们就不断寻找能够发光的各种物质。1907年,亨利·约瑟夫·让德发现碳化硅(SiC)能够发光。在接下来的50年中,不断有科学家发现能够发光的化合物。到了20世纪50年代,随着对砷化镓(GaAs)研究的不断深入,LED的发现终于水到渠成。①
    贝尔实验室、惠普、IBM、孟山都及RCA等公司在20世纪60年代首先开始了LED的研究。惠普和孟山都最先在1968年推出了基于镓砷磷的商用红光LED。在70年代早期,随着德州仪器、惠普和Sinclair等公司推出计算器和电子表等全新的产品,LED应用暴增。其它诸如指示灯和字母数字显示器等应用很快成为LED的主流应用,并延续至今。②

    LED技术背景
    顾名思义,LED就是会发光的二极管。二极管是最基本的半导体组件,其作用是在一定可控的范围内导电。最简单的二极管由电的不良导体构成,并对其进行改性(掺杂)以增加自由电子。高电子含量材料(称为N型材料)与低电子含量材料(称为P型材料)相连,为自由电子流动建立了通路。这个连接被称为PN连接。 
    LED就是拥有PN连接的二极管半导体,在通电后释放光子。该过程被称为注入发光,发生于电子从N型材料填充到P型材料低能量孔的过程中。高能电子进入低能量孔时会释放能量,产生光子。P型和N型材料层所使用的材料,以及两者之间的间距决定了生成光线的波长和能量水平。
    有多种材料可以用来生产LED,而目前比较普遍的应用是砷化铝镓(AlGaAs)、磷化铝铟镓(AlInGaP)和氮化铟镓(InGaN)。磷化铝铟镓一般用来产生红光和黄光;而氮化铟镓一般用来产生蓝光和绿光——这些材料生成的光子都在可视光谱之内。结合新的生产架构,它们可以被做成极亮的LED,用于一般照明和汽车照明。一些架构开始应用额外的磷化物以生成白光,凭借极低的能量消耗和更长的寿命与普通白炽灯和荧光灯展开竞争。
    全球LED产量已达每月40亿只左右,主要生产厂商集中在台湾、日本和美国,而台湾地区以占全球总产量50%的份额居于首位。多数厂家只是对LED晶粒进行封装,只有少数几家有能力实际生产LED晶粒。图1描述了LED市场中低亮度和高亮度LED各自所占的份额。③

    LED技术突破
    近来晶粒材料和封装生产方面的创新使LED亮度达到极高水平。基板使用了新的材料,提高了导热性能,从而吸收更多的能量,发出更亮的光。亮度的提升带来了新的LED应用,如汽车照明、交通信号,以及最新的电视显示屏。图2描述了新的架构。
    磷化铝铟镓和氮化铟镓生产水平的显着提升使蓝光和绿光的亮度分别得以提高,而其它颜色(如琥珀和青色)也随即问世。这些改进使整个系统能以等同于利用普通灯泡技术的亮度忠实地再现色彩,且寿命更长。其它的性能改进包括系统层的特性,如瞬时显像,无水银,无色彩刷新伪像,动态可调亮度,以及更宽的色域。图3 将LED和通用参考标准 (Rec. 709)的色域范围作了比较。
    LED照明的色域非常宽(比高清电视的色彩标准[Rec. 709]宽40%),因而色彩的忠实度更高。对于寿命和色彩还原度都有极高要求的电视机产品而言,LED技术尤其具有吸引力。随着LED技术的持续发展,其对于电视机产业的影响也与日俱增。图4描述了LED技术的演进,以及未来几年的亮度效率。④

    LED技术挑战 
    控制LED晶粒的热稳定性是LED发旋旋光性能和稳定性的关键所在。LED架构发出的漫射光从PN结构的表面和四周射向各个方向(在180度空间内均匀分布)。尽管这看起来效率很高,但实际上大部分光都被邻近的晶粒、基板,或者其它LED表面吸收了。这一吸收造成了整个LED装置热负荷的增加。为了获得最大的光输出和可靠性,热的问题必须妥善处理。此外,对于需要将光能集中到小型显示设备(如DLP高清电视)成像的应用而言,任何超出系统光学径角的光都不可用,且还有可能造成热度并增加系统能耗。因此, 控制对光的吸收,将光的发散形状和系统的光学径角相对应并提升热效率,将热从晶粒中发散出去,对于提高LED的产出和可用性都至为关键。

[1] [2]  下一页


Tag:信息显示与光电技术显示及光电,光电显示技术信息显示与光电技术
分类导航
最新更新
热门排行