功耗仅为15.5mW的16位1MSPS模数转换器
[10-10 20:38:44] 来源:http://www.88dzw.com 其它电路 阅读:8174次
文章摘要: 今年年初 TI 推出的两款模数转换器 (ADC) ADS8329 和 ADS8330 向世人展现了一个低功耗、高速和高性能的独特组合。该组合使其成为诸多应用的理想选择,例如:通信、医疗仪器、自动测试设备、数据采集系统或工业过程控制等。本文中,TI 的 ADC 马达控制设计经理 Frank Ohnhaeuser 就上述两款转换器的有关性能进行了概述,并对有助于实现这些性能的关键要素作了阐述。 ADS8329 和 ADS8330 属于同一个器件系列,他们是 500kSPS ADS8327 和 ADS8328 的升级延伸。所有产品均为引脚兼容,并提供了一个基于逐次逼近架构 (S
功耗仅为15.5mW的16位1MSPS模数转换器,标签:电路设计,http://www.88dzw.com今年年初 TI 推出的两款模数转换器 (ADC) ADS8329 和 ADS8330 向世人展现了一个低功耗、高速和高性能的独特组合。该组合使其成为诸多应用的理想选择,例如:通信、医疗仪器、自动测试设备、数据采集系统或工业过程控制等。本文中,TI 的 ADC 马达控制设计经理 Frank Ohnhaeuser 就上述两款转换器的有关性能进行了概述,并对有助于实现这些性能的关键要素作了阐述。
ADS8329 和 ADS8330 属于同一个器件系列,他们是 500kSPS ADS8327 和 ADS8328 的升级延伸。所有产品均为引脚兼容,并提供了一个基于逐次逼近架构 (SAR) 的 ADC。ADS8327 和 ADS8329 均为单通道器件,而 ADS8328 和 ADS8330 为双通道器件。一个内部时钟用于对转换计时,但是也可以对该转换器进行编程,以利用串行接口的外部时钟。编程和数据传送均通过一个高速串行接口来完成。
图 1 ADS8329/30 结构图
如果转换正在使用内部时钟,那么外部时钟就应该被关闭。非同步时钟信号通常会引起基板失真,从而得到两种选项。如果 ADC 以内部时钟运行,那么就应该在转换之后读取数据,并且在数据传送完成以前,不应触发新的转换。如果该部件通过外部时钟运行,那么就可以在下一转换期间读取数据。外部时钟以两倍的转换速度运行,以确保数据传送在运行转换复写 (overwrite) 输出数据以前完成。
通过串行接口编程可实现多种额外的功能。一种是双通道产品的通道选择。这样,就可拥有一个自动触发器,其在前一个转换完成以后自动将转换起始信号 (CONVST) 初始化为 4 个转换时钟周期。利用链模式,数个同步采样 ADC 的数据可以通过一个串行接口读取。您可以在产品说明书中查看到其他的特性。
该转换器系列专门优化用以实现低功耗,以便具有多种功耗降低特性。在慢内部信号保持上电而快速 (300ns) 恢复模块被关闭的情况下,得以实施一个 NAP 模式。我们可以将 2.7V 电源电压的电流消耗从 5mA 降低至 0.25mA,将 5V 电源电压的电流消耗从 7mA 降低至 0.3mA。可以通过串行接口或触发 CONVST 信号来唤醒 ADC。在正常运行状态下,CONVST 信号将会立即冻结输入电压,并开始转换。在 NAP 模式下,ADC 首先醒来,同时数据在 6 个时钟周期以后自动被冻结。
为了最小化开销,可将转换器置于一种 AUTONAP 模式。在该模式下,一旦转换完成,转换器就会自动地降低其电流消耗。因此,CONVST 信号可以被用于唤醒 ADC,并开始转换。在转换完成以后,ADC 将再次降低其功耗。
如果 ADC 长期保持非使用状态,那么深度睡眠 (PD) 功能应该被用于充分降低 ADC 功耗。剩余的漏电流通常为 4nA。图 2 和图 3 显示了 NAP 和 PD 运行中电流消耗与采样速率的关系。由于存在更长的唤醒时间,因此,深度睡眠运行模式应该只在低采样速率条件下才使用。对于 100kSPS 以上的采样速率而言,NAP 功能更为有效。
图 2 在 NAP 模式下,电流消耗与采样速率的关系
《功耗仅为15.5mW的16位1MSPS模数转换器》相关文章
- › 功耗仅为15.5mW的16位1MSPS模数转换器
- 在百度中搜索相关文章:功耗仅为15.5mW的16位1MSPS模数转换器
- 在谷歌中搜索相关文章:功耗仅为15.5mW的16位1MSPS模数转换器
- 在soso中搜索相关文章:功耗仅为15.5mW的16位1MSPS模数转换器
- 在搜狗中搜索相关文章:功耗仅为15.5mW的16位1MSPS模数转换器