电子制作中可控硅应用的误区

[05-11 05:30:24]   来源:http://www.88dzw.com  电子制作   阅读:8229

文章摘要: 可控硅用于控制电感负载,譬如电风扇、交流接触器、有变压器的供电设备等,则不同。因为这种移相式触发电路,可控硅在交流电半周持续期间导通,半周过零期间截止。当可控硅导通瞬间,加到电感负载两端电压为交流电的瞬时值, 有时可能是交流电的最大值。根据电感的特性,其两端电压不可能突变,高电压加到电感的瞬间产生反向自感电势, 反对外加电压。外加电压的上升曲线越陡,自感电势越高,有时甚至超过电源电压而击穿可控硅。因此,可控硅控制电感负载,首先其耐压要高于电源电压峰值1.5倍以上。此外,可控硅两电极间还要并联接入RC尖峰吸收电路。常用10— 30Ω/3W 以上电阻和0.1&mda

电子制作中可控硅应用的误区,标签:电子制作网,http://www.88dzw.com
    可控硅用于控制电感负载,譬如电风扇、交流接触器、有变压器的供电设备等,则不同。因为这种移相式触发电路,可控硅在交流电半周持续期间导通,半周过零期间截止。当可控硅导通瞬间,加到电感负载两端电压为交流电的瞬时值, 有时可能是交流电的最大值。根据电感的特性,其两端电压不可能突变,高电压加到电感的瞬间产生反向自感电势, 反对外加电压。外加电压的上升曲线越陡,自感电势越高,有时甚至超过电源电压而击穿可控硅。因此,可控硅控制电感负载,首先其耐压要高于电源电压峰值1.5倍以上。此外,可控硅两电极间还要并联接入RC尖峰吸收电路。常用10— 30Ω/3W 以上电阻和0.1—0.47uF/600V的无极性电容。
    交流调功电路中,可控硅是在交流电过零期间关断, 从理论上讲,关断时电流变化为零,无感应电压产生。加入RC尖峰抑制电路,是为了抑制可控硅导通时的自感电势尖峰。如不加入此电路,不但可控硅极易击穿,负载电路的电感线圈也会产生匝间、或电机绕组间击穿,这点是决不能忽视的。

三、该无级调压电路能用吗?
 
    图3是某电子杂志刊出的无级直流输出调压电路。原作者称,利用Rc移相网路控制SCR的导通角改变变压器初级的电流,从而获得两路连续可调的2x(0—17V) 的直流输出电压,负载电流为800mA 。很明显,推荐电路(图3)是普通移相式调功电路和降压变压器整流滤波电路的串联, 从基本原理分析,似乎无大的原则问题。变压器初级每半周电流有效值随可控硅导通角变化,次级输出电压的峰值、平均电流值都随之而变。当然,一定负载时输出整流电压也必然改变。本人看后,极感兴趣,依此原理制作了一台输出100±40V范围变化的维修代用直流电源,并依照图中虚线加入RC吸收回路。实验时,该电路一接入电源,距此10米远的电视机屏幕上即出现两条缓慢移动的黑带(从邻居的责问中得知),同时,空载下不到十分钟,SCR即击穿。更不能容忍的是,降压变压器铁心发出拖拉机启动时的声音,室内电度表也发出同样的声音,而且,随着输出电压的调低,声音更大。
    SCR击穿后, 本人在市电输入电路加入RC低通滤波,改用1000V/5A双向可控硅,变压器的噪声和干扰脉冲幅射没什么大的变化,只是
SCR未击穿。为了不扰邻,以及快的速度将输出电压调到60V, 用电压表测量次级电压,尽管负载电流仅100mA,滤波电容为470uF/100V,但万用表的表针抖动呈虚线状,可见其纹波大到什么程度。
    冷静下来后,仔细分析其原因,得出以下结论:经过移相调功之后,变压器初级电压已不是正弦波,而是锯齿波沿陡峭的前沿形成冲击磁场,使变压器、电度表等铁芯电感发出相当大的噪声。近似垂直上升的突变电压,在变压器初级大电感两端产生极高的反电势,因此击穿可控硅,时间稍长,甚至还要击穿变压器初级层间绝缘和电度表的电压线圈。当调低输出电压时,t1减小,t2增大,这种占空比极小的锯齿形电压,(见图中波形)。
    一般的滤波电路是无能为力的, 除非将负载电流减到极小,或滤波电路采用LC滤波。无论如何,占空比极小的电源还是不能适应的,其电压平均值将随负载大幅度变化。电压调得越低,其纹波滤除越困难,这是很明显的。实验中发现,若在小范围内调整,如变压器初级电压在180~220V之间变化, 上述噪声明显减小,次级纹波也降低, 但又有何价值呢?若读者感兴趣,不妨一试!

上一页  [1] [2] 


Tag:电子制作电子制作网电子制作 - 电子制作

《电子制作中可控硅应用的误区》相关文章