三级线圈发射模型研究

[09-13 17:00:28]   来源:http://www.88dzw.com  控制技术   阅读:8157

文章摘要:4 发射系统控制回路 本文采用电容器组供电,24V交流电为电容充电至变压器次级峰值电压34V(=24V×0.414)。经稳压模块和二极管整流,将24V交流电转换成+5V的直流电为元器件供电。 第一级线圈由起动开关触发晶闸管,控制电容放电,导通线圈,发射抛体,当第一级线圈的电压降至晶闸管闭锁电压,晶闸管关断。 第二级和第三级各级线圈由炮管上光电传感器检测抛体位置控制晶闸管通断,常态时传感器开通,传感器输出电压为零,没有电流流过,晶闸管门极电压为零,处于关闭状态。当抛体通过传感器时,挡住传感器的光源,传感器关断,输出电压上升至2.5V,电流经放大流入晶闸管门极。晶闸管在几毫秒内开

三级线圈发射模型研究,标签:计算机控制技术,工厂电气控制技术,http://www.88dzw.com

4 发射系统控制回路
    本文采用电容器组供电,24V交流电为电容充电至变压器次级峰值电压34V(=24V×0.414)。经稳压模块和二极管整流,将24V交流电转换成+5V的直流电为元器件供电。

    第一级线圈由起动开关触发晶闸管,控制电容放电,导通线圈,发射抛体,当第一级线圈的电压降至晶闸管闭锁电压,晶闸管关断。
    第二级和第三级各级线圈由炮管上光电传感器检测抛体位置控制晶闸管通断,常态时传感器开通,传感器输出电压为零,没有电流流过,晶闸管门极电压为零,处于关闭状态。当抛体通过传感器时,挡住传感器的光源,传感器关断,输出电压上升至2.5V,电流经放大流入晶闸管门极。晶闸管在几毫秒内开通,开通后电压为1.5V,电容放电,线圈导通,加速抛体前进,然后传感器再次导通。用电容过滤电路的干扰以防止小电压触发晶闸管。
    为保证各线圈产生的磁场与抛体的运动位置精确同步,线圈的触发时刻要精确,采用触发延迟电路以更好地调节给线圈供电时刻。除电容连接线圈的导线及整流器的阳极的电流外所有的电路都为小电流,线圈点火时会产生杂散干扰,采用双绞线连接发光管和传感器,以减少不必要的干扰。
5 性能测试

    通过本文所设计的模型进行实验,获得如下实验数据。图5.1抛体长度与抛体速度、抛体能量关系表明长度为25~40mm的抛体发射速度和动能最佳。由图5.2抛体在线圈的初始位置与速度关系可见2、抛体初始位置在15mm处速度达最大值。分析图5.3电容电压与抛体速度、能量转换效率的关系得出如下结论,增大电容电压抛体速度加快,但是超过30V后,抛体速度增益不明显,同时能量转化率降低。

6 结束语
    本文依据电磁感应原理,探讨了线圈发射原理和方式,推算电源脉冲功率,设计控制回路。发射实验结果表明:3级电磁发射装置在30V电压下,将质量为6.5g的抛体加速至5.85m/s,能量转化率达0.112%。但是,对工程实用,为进一步提高能量转换率需进行结构优化。

参考文献:

[1]Zak A R,Structural analysis of realistic solid propellants materials[J].spacecraft and Rockets,1968,5
[2]庄国臣,等.电磁发射器及应用[J].电工技术杂志,1997,6
[3]程健,等.单级线圈加速电枢的机理分析[J].电工技术杂志,1997,9
[4]朱宽宁,梁艳萍.电磁场有限元后处理中矢量场的可视化[J].电机与控制学报,2002,Vol.6
[5]Horowitz and Hill,The Art of Electronics[C].Cambridge University Press,1980,ISBN 0521231515

上一页  [1] [2] 


Tag:控制技术计算机控制技术,工厂电气控制技术控制技术

《三级线圈发射模型研究》相关文章