非正弦周期信号的傅里叶级数分解

[09-12 12:35:39]   来源:http://www.88dzw.com  电路基础   阅读:8103

文章摘要:非正弦周期信号的傅里叶级数分解 前面章节中已对直流电路与正弦交流电路的分析计算方法作了详细介绍,当电路的激励源为直流或正弦交流电源时,可用所述方法对电路进行分析计算。但是在实际电气系统中,却经常会遇到非正弦的激励源问题,例如电力系统的交流发电机所产生的电动势,其波形并非理想的正弦曲线,而是接近正弦波的周期性波形。即使是正弦激励源电路,若电路中存在非线性器件时,也会产生非正弦的响应。在电子通信工程中,遇到的电信号大都为非正弦量,如常见的方波、三角波、脉冲波等,有些电信号甚至是非周期性的。对于线性电路,周期性非正弦信号可以利用傅里叶级数展开把它分解为一系列不同频率的正弦分量,然后用正弦交流电路相量

非正弦周期信号的傅里叶级数分解,标签:电子电路基础,模拟电路基础,http://www.88dzw.com
非正弦周期信号的傅里叶级数分解

前面章节中已对直流电路与正弦交流电路的分析计算方法作了详细介绍,当电路的激励源为直流或正弦交流电源时,可用所述方法对电路进行分析计算。但是在实际电气系统中,却经常会遇到非正弦的激励源问题,例如电力系统的交流发电机所产生的电动势,其波形并非理想的正弦曲线,而是接近正弦波的周期性波形。即使是正弦激励源电路,若电路中存在非线性器件时,也会产生非正弦的响应。在电子通信工程中,遇到的电信号大都为非正弦量,如常见的方波、三角波、脉冲波等,有些电信号甚至是非周期性的。

对于线性电路,周期性非正弦信号可以利用傅里叶级数展开把它分解为一系列不同频率的正弦分量,然后用正弦交流电路相量分析方法,分别对不同频率的正弦量单独作用下的电路进行计算,再由线性电路的叠加定理,把各分量叠加,得到非正弦周期信号激励下的响应。这种将非正弦激励分解为一系列不同频率正弦量的分析方法称为谐波分析法。

设周期函数的周期为T,则有:

   (k为任意整数)

如果函数满足狄里赫利条件,那么它就可以分解成为傅里叶级数。一般电工技术中所涉及的周期函数通常都能满足狄里赫利条件,能展开为傅里叶级数,在后面讨论中均忽略这一问题。

对于上述周期函数,可表示成傅里叶级数:

            (6-1-1)

或                 (6-1-2)

式中,

[1] [2] [3] [4] [5] [6] [7] [8] [9]  下一页


Tag:电路基础电子电路基础,模拟电路基础电路基础

《非正弦周期信号的傅里叶级数分解》相关文章