SPIC噪声分析介绍(运算放大器电路的固有噪声分析与测量)

[11-20 17:31:58]   来源:http://www.88dzw.com  模拟电子技术   阅读:8753

文章摘要:第四部分:SPIC 噪声分析介绍作者:Art Kay,德州仪器 (TI) 高级应用工程师在本系列的第三部分,我们对简单的运算放大器电路进行了实际分析。在本部分中,我们将采用所谓 “TINA SPICE” 电路模拟套件来分析运算放大器电路。(您可在 TI 网站 上通过输入 TINA 搜索,获得 TINA SPICE 的免费版 TINA-TI)。TINA SPICE 能够就 SPICE 套件进行传统类型的模拟(如 dc、瞬态、频率域分析、噪声分析等)。此外,TINA-TI 还配有众多 TI 模拟宏模型。在本部分,我们将介绍 TINA 噪声分析以及如何证明运算放大器的宏模型能准确对噪声进行建模。重

SPIC噪声分析介绍(运算放大器电路的固有噪声分析与测量),标签:模拟电子技术基础,模拟电子电路,http://www.88dzw.com

第四部分:SPIC 噪声分析介绍

作者:Art Kay,德州仪器 (TI) 高级应用工程师

在本系列的第三部分,我们对简单的运算放大器电路进行了实际分析。在本部分中,我们将采用所谓 “TINA SPICE” 电路模拟套件来分析运算放大器电路。(您可在 TI 网站 上通过输入 TINA 搜索,获得 TINA SPICE 的免费版 TINA-TI)。TINA SPICE 能够就 SPICE 套件进行传统类型的模拟(如 dc、瞬态、频率域分析、噪声分析等)。此外,TINA-TI 还配有众多 TI 模拟宏模型。

在本部分,我们将介绍 TINA 噪声分析以及如何证明运算放大器的宏模型能准确对噪声进行建模。重要的是,我们应当了解,有些模型可能不能对噪声做适当建模。为此,我们可以用一个简单的测试步骤来加以检查,并通过用分离噪声源和通用运算放大器开发自己的模型来解决这一问题。

测试运算放大器噪声模型的准确性

图 4.1 显示了用于确认运算放大器噪声模型准确性的测试电路。CCV1 是一种流控电压源,我们用它来将噪声电流转换为噪声电压。之所以要进行这种转换,是因为TINA 中的“输出噪声分析”需要对噪声电压进行严格检查。CCV1 的增益必须如图所示设为 1,这样电流就能直接转换为电压。运算放大器采用电压输出器配置,这样输出就能反映输入噪声情况。TINA 能够识别到两个输出测量节点 “voltage_noise” 与 “current_noise”,它们用于生成噪声图。由于 TINA 需要输入源才能进行噪声分析,因此我们添加了信号源 VG1。我们将此信号源配置成正弦曲线,但这对噪声分析并不重要(见图 4.2)。

        图 4.1:配置噪声测试电路(设置 CCV1 增益为 1)


          图 4.2:配置噪声测试电路(设置信号源 VG1)

随后,我们可从下来菜单中选择 “分析\噪声分析”( 如图 4.3 所示),进行噪声分析,这将生成噪声分析表。然后输入需要的起始和终止频率。该频率范围由受测试的运算放大器的规范决定。就本例而言,OPA227 的规范要求频率范围为 0.1 Hz~10 kHz,也就是说,这就是适合本例的频率范围。随后,在 “图表” 项下选择 “输出噪声” 选项,便可针对电路中每个测量节点(仪表)生成不同的频谱密度曲线。这样,我们进行分析时,就能获得两个频谱密度曲线图,一个是针对 “电压噪声”节点,另一个则是针对 “电流噪声” 节点。

          图 4.3:执行 “噪声分析” 选项

图 4.4 显示了噪声分析的结果。我们可用一些简单的方法来将曲线转换为更有用的形式。首先,我们点击 “视图” 菜单下的 “曲线分离”,随后,再点击 Y 轴并选择 “对数” 标度。根据适当范围设置上下限(四舍五入到 10 的N次幂)。点数调节为 1+Number_of_Decades。在本例中,我们有三个十倍频程(即100f ~100p),因此,我们需要四点(见图 4.5)。

         图 4.4:转变为更有用的格式的简单方法(曲线分离)

[1] [2] [3] [4] [5]  下一页


Tag:模拟电子技术模拟电子技术基础,模拟电子电路模拟电子技术