双极发射极跟随器:具有双通道反馈的RISO

[11-20 17:32:05]   来源:http://www.88dzw.com  模拟电子技术   阅读:8613

文章摘要:图41:Aol测试示意图:CMOS RRO。从Tina SPICE仿真测量得出的OPA734 Aol曲线如图42所示。测得的单位增益带宽为1.77MHz。 图42:Aol测试结果:CMOS RRO。图43:由Zo、CCO、RCO、CL改变Aol效应的TINA电路。现在,我们必须测量如图43所示的Zo(小信号AC开环输出阻抗)。该Tina SPICE测试电路将测试空载OPA734的Zo。请注意,由于我们测试的是单电源电路,因此将输出信号调整至Vs/2(2.5V),以确保运算放大器输出电流的正弦波位于工作的线性区域。RL以及LT为低通滤波器函数提供了一条AC通道。这样,在反馈电路中,就可使DC处于

双极发射极跟随器:具有双通道反馈的RISO,标签:模拟电子技术基础,模拟电子电路,http://www.88dzw.com
图41:Aol测试示意图:CMOS RRO。
图41:Aol测试示意图:CMOS RRO。

从Tina SPICE仿真测量得出的OPA734 Aol曲线如图42所示。测得的单位增益带宽为1.77MHz。

图42:Aol测试结果:CMOS RRO。

图43:由Zo、CCO、RCO、CL改变Aol效应的TINA电路。
图43:由Zo、CCO、RCO、CL改变Aol效应的TINA电路。

现在,我们必须测量如图43所示的Zo(小信号AC开环输出阻抗)。该Tina SPICE测试电路将测试空载OPA734的Zo。请注意,由于我们测试的是单电源电路,因此将输出信号调整至Vs/2(2.5V),以确保运算放大器输出电流的正弦波位于工作的线性区域。RL以及LT为低通滤波器函数提供了一条AC通道。这样,在反馈电路中,就可使DC处于短路状态而AC处于开路状态。由于RL限定在Vout(2.5V)和Vs/2(2.5V)之间,所以DC工作点在输出端显示为2.5V或Vs/2伏,这也就是说,OPA734没有电流流入或流出。此时,通过运用1Apk AC电流发生器(我们能够扫视10mHz至1MHz的AC频率范围),Zo的测量工作能够轻松完成。最后,得出测量结果Zo=Vout(如果将测量结果的单位从dB转换为线性或对数,Vout也就是以欧姆为单位的Zo)。

图44:Zo、开环输出阻抗:CMOS RRO。
图44:Zo、开环输出阻抗:CMOS RRO。

从图44中,我们可以看出,OPA734 Zo是CMOS RRO运算放大器输出级所独有的特征。而且,这种输出级的Ro在高频时,处于支配地位。同时,Co所呈现出的电容效应在频率低于92Hz时,处于支配地位。

根据前面图表的仿真测试结果,我们在图45中构建了OPA734的Zo模型。RO直接测得为129欧姆,fz直接测得为92Hz。根据测得的fz和RO数值,我们可以轻松地计算出CO的数值(为13.4uF)。最终完成了如图所示的Zo模型。

图45:Zo模型:CMOS RRO。

图46:Zo外部模型:CMOS RRO。
图46:Zo外部模型:CMOS RRO。

为了使1/β分析的情况包含在Zo与Riso、CL、CF以及RF之间相互作用的影响结果内,我们需将Zo从运算放大器的宏模型中分离出来,以便于弄清楚电路中所需的节点。这种构思如图46所示。另外,U1将提供产品说明书的Aol曲线,并从Riso、CL、CF以及RF的各种影响中得到缓冲。

上一页  [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]  下一页


Tag:模拟电子技术模拟电子技术基础,模拟电子电路模拟电子技术

《双极发射极跟随器:具有双通道反馈的RISO》相关文章